小学公式与规律总结 第1篇
⑴ 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
⑵ 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
⑶ 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
⑷ 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
⑸ 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
⑹ 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
⑺ 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
小学公式与规律总结 第2篇
⑴ 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
⑵ 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
⑶ 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
小学公式与规律总结 第3篇
⑴ 纯小数:整数部分是零的小数,叫做纯小数。例如: 、 都是纯小数。
⑵ 带小数:整数部分不是零的小数,叫做带小数。例如: 、 都是带小数。
⑶ 有限小数:小数部分的数位是有限的小数,叫做有限小数。例如: 、 、 都是有限小数。
⑷ 无限小数:小数部分的数位是无限的小数,叫做无限小数。例如: …… ……
⑸ 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:π
⑹ 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: …… …… ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如: ……的循环节是“ 9 ” , ……的循环节是“ 54 ” 。
⑺ 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如: …… ……
⑻ 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 …… ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。
小学公式与规律总结 第4篇
⑴ 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
⑵ 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
⑶乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,即(a+b)×c=a×c+b×c 。
⑷ 乘法分配律扩展:
两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减,即(a-b) ×c=a×c-b×c
小学公式与规律总结 第5篇
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间
数与数的运算
01
概念
注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意
发表评论