数学开关问题规律总结 第1篇

1、线

⑴直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

⑵射线

射线只有一个端点;长度无限。

⑶线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

两点之间线段的长度就是两点间的距离。

直线射线线段的联系:都是直的,射线和线段都是直线的一部分。

⑷同一平面内两条直线的位置关系有平行和相交两种。

⑸平行线

定义:在同一平面内,不相交的两条直线叫做平行线。直线a平行于b,直线b也平行于a。

性质:过直线外一点只能画一条直线与已知直线平行。

两条平行线之间的垂直线段有无数条,长度都相等。平行线间垂直线段处处相等。

画法:一合,二靠,三移,四画。

⑹垂线

定义:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

性质:

过一点(直线上或直线外)只能画一条直线与已知直线垂直。

从直线外一点到这条直线所画的垂直线段最短,它的长度叫做点到直线的距离

画法:一合,二过,三画,四标。

2、角

(1)角的定义从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的度量角的计量单位是_度_,用符号_°_表示。把半圆分成180等份,每一份所对的角的大小是1度。记作_1°_。

(3)角的大小比较角的大小与角的两边画出的长短没有关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。

(4)角的画法一画线,二量角,三连线,四标注。一副三角板可以画出的角的度数是15的倍数。

(5)角的分类

①、锐角:小于90°的角叫做锐角。

②、直角:等于90°的角叫做直角。

③、钝角:大于90°而小于180°的角叫做钝角。

④、平角:角的两边成一条直线,所组成的角叫做平角。平角180°。

⑤、周角:角的一边旋转一周,与另一边重合。周角是360°。

数学开关问题规律总结 第2篇

统计表和条形统计图都可以清楚地表示出数量的多少,但条形统计图比统计表更形象直观。更能看出数据之间的关系。

1、条形统计图常用1格代表2个单位,有时还要用半格来代表1个单位。如果要表示的数据比较大,可以用一格代表5个单位或更多的单位,一个代表几个单位,要根据具体情况来确定,这样比较方便。

2、由统计表画统计图的步骤和注意要点:

(1)观察表中项目,确定数据项(一般为数量)和类别项(小组名称、年份、时间等)

(2)确定横纵轴、刻度以及图的类型(横向或纵向)。

(3)画条形,标数据,注意条形的高度要符合刻度,纵向统计图的顺序是从左往右,横向统计图的顺序是从下往上。

(4)添上图例,根据图例补充完条形的条纹以示区别。

(5)标上标题。

(6)检查要素是否齐全。

4、学会统计图中提取信息,发现问题,进行合理的判断、预测和决策,并能解决生活中的简单问题。

如何学好小学数学的方法

1、重视课本的内容

书本知识是小学生学习数学最根本的一部分了,小学生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,小学生一定要熟练掌握。小学生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。

2、通过联系对比进行辨析

在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。

3、多做练习题

要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

4、课后总结和反思

在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

小学数学三角形的公式

三角形体积

三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

三角形计算公式

1、两边之和大于第三边,两边之差小于第三边。

2、大角对大边。

3、周长c=三边之和a+b+c

4、面积:

s=1/2ah(底_高/2)

s=1/2absinC(两边与夹角正弦乘积的一半)

s=1/2acsinB

s=1/2bcsinA

不做伸手党!需要更多更详细的资料,可以直接私我奥,有偿,但价格绝对能接受!

数学开关问题规律总结 第3篇

一、垂直与平行

1、认识平行和垂直

①同一平面内的两条直线的位置关系只有两种:相交和不相交。相交又有成直角的和不成直角的两种情况。

_“同一平面”是确定两条直线平行关系的前提,如果不在同一平面内,即便不相交,也不能称为互相平行。

②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

平行的表示方法:a//b,读作a平行于b。

生活中平行的例子:窗户相对的框,黑板相对的两条边,公路上的斑马线

③垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

垂直的表示方法:ab

生活中垂直的例子:三角尺上的两条直角边互相垂直.

④三条直线的特殊关系:

a//b,b//c,那么a//c:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行

ab,bc,那么a//c:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。

2、垂线的画法和性质

①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。

②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线

③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

3、平行线的画法及运用

①平行线的画法:固定三角尺,沿一条直角边先画一条直线;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;再沿第一步中的直角边画出另一条直线。

②检验两条直线是否平行的方法:把三角尺的一条直角边与其中的一条直线重合;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;如果第一步的三角尺的直角边与另一条直线完全重合,这两条直线就互相平行,如果不完全重合,这两条直线就不平行。

③两条平行线之间的距离处处相等。

④怎样画长方形:

画垂线的方法:按画出长3厘米的线段,做长方形的长;从画出的线段两端画两条与这条线段垂直的线段,使这两条线段长2厘米;把两条2厘米长的线段点连接起来。

画平行线的方法:画出长3厘米的线段,做长方形的长;把三角尺的一条直角边与这条线段重合,用直尺紧靠三角尺的另一条边,固定直尺,然后平移三角尺使移动的距离达到宽所指定的长度,沿第一步中的直角边画出长所指定的长度;把两条线段相对应的端点连接起来。

二、平行四边形和梯形

1、认识平行四边形和梯形

①四边形分类:一类是两组对边分别平行;另一类是只有一组对边平行

②平行四边形:两组对边分别平行的四边形叫做平行四边形。长方形和正方形是特殊的平行四边形。正方形是特殊的长方形。

③梯形:只有一组对边平行的四边形叫做梯形。生活中的梯形:梯子、堤坝的横截面等

④平行四边形和梯形的相同点和不同点:

相同点:都是四边形;都有平行的对边

不同点:平行四边形的两组对边平行且相等;梯形有且只有一组对边平行,且平行的这组对边不相等

2、平行四边形的特征:平行四边形容易变形,具有不稳定性。

生活中平行四边形不稳定的应用:校园电动推拉门,商店面铺推拉门等

3、平行四边形和梯形各部分名称及高的画法

①为平行四边形和梯形各条边命名

平行四边形的底和高:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

②梯形中互相平行的一组对边,较短的边叫做梯形的上底,较长的边叫做梯形的下底,不平行的那组对边,分别叫做梯形的腰。

③等腰梯形:两腰相等的梯形。

④直角梯形:当一条腰与上底、下底垂直时,这个梯形叫直角梯形。

⑤画高时注意:所画的高要用虚线表示;一定要画垂足符号。

练习题

一、基础知识点

1、两组对边分别平行的四边形,叫做(平行四边形)。

2、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的(高),垂足所在的边叫做平行四边形的(底)。

3、平行四边形具有(不稳定性)性,容易(变形)。

4、只有一组对边平行的四边形叫做(梯形)。

5、在梯形里,互相平行的一组对边分别叫做梯形的(上底)和(下底),不平行的那组对边叫做梯形的(腰)。从上底的一点向下底引一条垂线,这点和垂足之间的线段叫做梯形的(高)。

6、两腰相等的梯形叫做(等腰梯形)。有一个角是直角的梯形叫做(直角梯形)。

二、基础练习

1、判断对错

(1)梯形有两组对边平行。(×)

(2)长方形是特殊的平行四边形。(√)

(3)平行四边形只有一条高。(×)

(4)平行四边形具有稳定性。(×)

(5)直角梯形只有一个直角。(×)

数学学习方法

逻辑法

逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

逆向思维法

逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的`事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

小学数学常用计算公式

(1)长方形面积=长×宽,计算公式s=a b

(2)正方形面积=边长×边长,计算公式s=a × a

(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2

(4)正方形周长=边长× 4,计算公式s= 4a i

(5)平形四边形面积=底×高,计算公式s=a h.

(6)三角形面积=底×高÷2,计算公式s=a×h÷2

(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2

(8)长方体体积=长×宽×高,计算公式v=a bh

(9)圆的面积=圆周率×半径平方,计算公式s=лr2

(10)正方体体积=棱长×棱长×棱长,计算公式v=a3

(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh

(12)圆柱的体积=底面积×高,计算公式v=s h

注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意

发表评论

评论列表(7人评论 , 39人围观)