初一数学小论文范文 第一篇

1现代中医基础理论学术规范概念与结构及意义

概念该学术规范是学术规范和中医学学术规范的下位概念;具有其上位概念的共性特征以及区别同级概念的自身特征。定义该概念为:研究主体从事中医学术和现代中医基础理论研究,需要遵循的学术追求与行为活动的基本准则和具体规范。这一概念及其定义指明规范的对象是研究主体(代指研究人员)与其研究内容,规范的内涵是学术追求与行为活动的准则。它符合学术概念的“专门系统的知识及其对该知识的研究”的双重含义,且具有学术规范下位概念的自身特征。因此,是一立得住的概念及其定义。尽管今后需要修定,但目前可以参照应用。

结构不同的学术规范都有其有不同的结构。现代中基学术规范具有如下3个层面结构:学术追求,昭示研究主体的探索取向;学术准则,规定研究主体的基本方法原则;研究与写作规范,则是面向研究内容的具体规定。该规范的结构从上到下,由研究主体的价值取向到基本方法,再到研究内容的具体规定,是一逐步递进层层深入的立体交叉的有机结构。需要说明的是,该规范及其结构,本应具有上面学术规范的相应内容和结构。如学术争鸣与评价的规范、学术不端界定与处罚的规范。限于篇幅和初步探讨,这些不足和缺如,留待学术共同体同行修正提高。

2学术追求规范指学术主体研究面向研究内容探索取向的规范

即对学术研究的目的及其目标是什么,做出规范。

探索未知指研究主体应当探索其研究对象尚未认知的现象及其机制的规范。创新,是学术研究首要目标。现有中医基础理论,是通过“以象测脏”、“司外揣内”建立起来的整体直观水平上的描述性的理论。产生脏象外在表现的内脏结构及其功能机制,尽管已有大量研究和发现,但远不清楚。因此,探索未知自然是该学术追求的首要规范。这对现代中医基础理论研究建立,至关重要。

追求新知指研究主体探索未知的同时,应当遵循洞察科学前沿最新知识的规范。遵循这一学术追求规范,方能提升中医学术研究水平,保障现代中医基础理论研究与科学发展同步。下面“学科尺度”所列举两个例证,足以佐证该规范重要和必要性。

3学术准则规范指研究主体进行学术研究和发表论著应当遵循的基本标准和原则

遵循如下三条标准和原则,有利于中医学术研究突破难以为外界接受的“瓶颈”,现代中医基础理论与现代科学及现代医学相互沟通。

科学视野指以科学眼光,从相关科学背景下,开展中医学术和现代中基的研究的准则。该条准则,是对中医现代研究已经走向国际科学前沿众多事实的概括,对这一发展趋势的把握。在SCI收入杂志发表中医研究论文日益增多是事实,也是趋势。遵循这一准则,将提升研究水平,加快中医走向世界科学舞台的步伐。

学科标尺指从学科专业角度,开展相关研究并衡量研究水平的准则。如上所述,学术简言之就是各学科发展中的知识和对该知识的专业化的研究。因此,需要遵循学科标尺的准则,以衡量出研究水平的高低,提升研究水平。例如,系统生物学与中医的研究,如果遵循学科标尺原则,用系统生物学学科尺度去衡量,则可发现其不足,有利于改进提高。有关系统生物学的概念及其最新发展,详见下面“明确概念”条目下的例证。再如,我们前面提出“肝主疏泄的功能通过脑内相关脑区功能调控而实现”的科学假说[1],同样需要置于脑科学功能影像学科领域去比较水平高低。只有如此,才能改进提高。反之,如不遵循这一准则,则难免陷于“自话自说”的低水平重复。学科标尺作用,前面论文“新学科”[2]已做明确阐述,详参该文。

公认理念指研究应遵循科学界公认的标准,研究结论应取得科学界认可的准则。该条准则,是上述两条的补充发展。意义同上。有关“公认理念”详参“新理念”一文[3]。

4学术研究与写作规范

学术研究涉及从选题,到研究中的取材、设计、论证及其结论的全过程。限于篇幅和首次探讨,本文侧重于学术研究与论著撰写中的亟待重视几个问题,做出相应的探讨。初步提出以下7个方面的规范,一是现有中医学术研究与其发表学术论文中暴露出的问题与这7个方面密切相关;二是面向中医现代研究与现代中医基础理论构建,7个方面必不可少。以避免上述问题,减少新理论创建中的差错。

初一数学小论文范文 第二篇

一、有效互动激发学生的学习主动性

在初中数学教学活动中,教师和学生是互动的双方,在教学中,教师要摆脱传统教学中单一、死板的教学方式,用生动的语言来引导学生,使他们能够对学习产生兴趣,并积极地进行知识探究,感受和体验知识的形成过程,激发他们学习数学的内在动力,使数学课堂在活跃氛围中顺利进行。

1.用幽默的语言来激发学生的学习积极性。

幽默的语言能产生强大的调动作用,教师运用生动、幽默的语言进行教学,能够有效加强学生的注意力,使他们和教师进行积极互动,并认真探究教师布置的任务,使学习效率不断提高。幽默的语言能使课堂摆脱压抑沉闷的气氛,使学生活跃起来,对教师提出的问题能够积极思考,使数学综合能力不断提高。

2.运用问题进行引导,启发学生的数学思维。

在课堂教学中,运用问题教学能够有效实现师生的积极互动,在提出问题和解决问题的过程中,师生双方进行了双向信息传递,教师提出的问题给学生设定了探究的目标,而学生解决问题的结果让教师对学生的情况有了深入了解。在这个互动环节,教师对学生解决不了的问题进行指导,使他们能够摆脱定式思维,从另一个方面对问题进行分析和思考,最终有效解决问题,获得学习的乐趣。在进行问题教学时,教师要注重问题的设计形式以及难易程度。对于同一个问题,如果教师在创设的情境中进行提问,能有效提高学生的探究兴趣,提高回答问题的正确率。在关注学生学习动态的同时,教师还要关注学生的情感体验,使每一个学生在学习过程中都有收获,获得教师的肯定,激励他们更积极主动地进行学习和探究,在高效的教学环境下,促进全班学生的进步。

二、以学生为主体,重视数学素质的培养

在数学教学中,教师不仅要让学生掌握丰富的数学知识,提高他们的数学思维能力,还要让学生具备自主学习能力,让他们在主动探究过程中提高数学素养。在教学中,教师要摆脱传统教学中的教学方式,用新的教学方式来进行教学,提高学生对数学学习的兴趣,发挥学生的学习主体作用。在教师的指导下,学生进行积极高效的知识探究,使课堂教学真正实现素质教育,提高学生的数学素养,使他们能够独立思考和解决数学问题。在教学中,让学生学习、参与数学化过程,充分发挥数学的形式训练价值及应用价值,使数学课堂教学不仅能提高学生的数学能力,还可以让他们把具备的自主学习能力迁移到其他学科的学习中,促进学生综合素质的发展。

三、加强数学实践教学,发展学生的数学思维能力

教师进行教学的目的是培养学生运用知识的能力,在对知识理解和深化的过程中,只有在实际问题中进行运用才能有效发展学生的数学思维,使他们能够用数学的眼光来看待问题,用数学思维来分析问题,有效提高数学综合素质的发展。

1.训练学生的思维速度,发展他们思维的敏锐性。

在初中数学教学中,教师要提高学生的思维速度,需要根据教材内容和学生的能力来精心设计教学环节,激发学生的积极性,使他们在分析知识的过程中提高思维敏锐性,更好地理解和掌握数学知识。例如,教师可以在讲完新课后,给学生出一些速算题目,进行思维训练;也可以布置一些开放性的习题,让学生在规定的时间内思考,有效提高他们的思维速度。

2.解决数学实际问题,加强思维训练。

在数学教学中,教师要重视学生对知识的运用能力,通过把实际问题引入到课堂中,引导学生在分析问题的过程中体会问题的思考方式和解决方式,有效提高他们的数学思维能力。在进行思维强化训练时,教师不要让学生进行题海战术,而是要通过题目练习使他们掌握解决问题的方法,提高学习效率。

3.改变学生的定式思维,发展逆向思维能力。

在发展学生的数学思维过程中,教师要让学生摆脱定式思维的影响,对一个问题进行分析时,从正向思维和逆向思维分别进行分析,感受解决问题的有效方法,使思维的发展趋向多元化,有效发展学生的数学综合思维能力。四、加强数学运用教学,提高知识运用能力在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。当数学和学生的现实生活密切结合时,数学才是活的、富有生命力的,才能激发学生学习和解决数学问题的兴趣。我们知道,数学来源于生活,又服务于生活。学生喜欢学一些与实际生活有关的数学知识,如果是他们身边的熟悉事例,就很容易能引起学生学习的兴趣。而每一个数学概念、定理、公式的诞生均有它的实际背景,所以教学时应从实际入手,通过学生熟悉的实际问题抽象出数学概念,感悟新知识。

四、总结

总之,初中数学教学要摆脱传统教学中的单向信息传递,采用教师和学生积极互动的双向信息交流,使教学活动在学生的主动探究过程中实现教和学的双赢。在教学中,教师要不断对教学进行反思,改进教学方法,让学生在有效的学习方法下掌握分析问题和解决问题的思路,促进他们数学思维的发展,使数学教学顺利进行,有效实现教学目标。

初一数学小论文范文 第三篇

我上了初中以来,自从我上了八年级,我真心喜欢上了物理。

曾经听同学说过。当然上了初中,我就会喜欢上物理。

在这里,我只是想,“喜欢一门课程,自然也会喜欢上那门课程上的老师”,这句话我真的体会到了。

我从小学开始,就一直很喜欢上自然课,因为自然课上不仅有趣,而且还可以去实验室做一些有趣的实验介绍一下我的物理老师。

我的物理老师姓郭自从,他人很胖,再加上一副黑色边框的眼睛,显得很有学问。不过,他不是我们学校的物理老师,而是我们补课的物理老师。他虽然是我的补课老师,但是,我还是很喜欢他。

郭老师说话很幽默,讲起课来也是十分生动,我更加地喜欢物理了,而且,我下定决心,一定要把物理学好,将来也当一名老师,当一名物...

初一数学小论文范文 第四篇

一、学生在数学课堂上缺乏质疑能力的原因分析

(一)来自老师方面的原因

作为教学主体的老师在培养学生质疑能力方面起着至关重要的作用。而老师的教学观念、教学方法、质疑观、知识储备都会对培养学生质疑能力产生影响。老师在数学教学过程中着重于具体知识的传授,忽略了问题情境的设置,在教学方法上老师总是把归纳好的解题方法和技巧灌输给学生,使学生丧失了思维拓展能力,不利于质疑能力的培养。老师对来自学生的质疑不能很好的处理,同时老师的自身的知识储备有限也是影响培养学生质疑能力的重要原因。

(二)来自教材的原因

现行的数学教材展现的仍然是过多的公式、公理等纯数学知识,而很少提及这些公式、公理等纯数学知识在怎样的背景下提出来的,最终如何解决的。即使现有的数学与现实相联系,但因为人为对解题条件和数据进行了加工,而最终缺乏现实感,难以激发学生的兴趣和培养学生的质疑能力。

(三)评价方面的原因

目前的评价标准仍然是把考分作为唯一的标准。而考题是对书本知识的模仿和再现。这样的评价标准难以培养学生对数学的兴趣,同时在培养学生质疑能力方面没有发挥正确的导向作用。

二、如何在数学课堂上提高学生的质疑意识和能力

现行的基础教育课程改革纲要提出了要求:要使学生具有初步的创新精神、实践能力、科学和人文素质以及环境意识,逐渐培养学生的质疑意识与批判意识,鼓励学生对书本与老师的质疑,赞赏学生独特和富有个性化的表达与理解,充分挖掘学生的潜能,培养他们的创新能力。古人训:疑是思之始,学之端;为学患无疑,疑则有进。新的数学课程改革也非常注重对学生质疑问难能力的培养,认为质疑问难能力的高低是评判学生创新意识和创新能力的重要标志。那么如何在数学课堂上提高学生的质疑意识和能力呢?

(一)营造宽松积极的环境,培养学生敢于质疑的意识

传统数学教学中,老师是课堂的主导,是课堂的权威,而课本被认为是最具有科学性和权威性的书籍。许多学生对老师的讲解存在迷信“权威”和盲从的心理障碍。我们教师自身必须要意识到课堂教学是一个学生和老师、学生和学生之间的多变互动的一个过程。要让学生置身于平等、自由、宽松的环境中,他们才更乐意去思索、质疑。通过创设情境充分地调动学生的积极性。例如在七年级下册中,教统计调查的这一课程时,我运用“抢30”的游戏来体现机会均等和不均等。游戏规则是这样的:第一个人先说1或者1、2,第二个人则接着往下说一个或者两个数,然后再由第一个人接着往下说一个或两个数,这样两人反复轮流,每人每次说一个或两个数都行,但是不可以连续说三个数。谁先说到30,谁就赢得游戏。问:这个游戏公平吗?这个游戏是学生第一次接触,为了让学生全部都参到课堂上来。通过研究分析,我做了如下处理:首先,出示题目让学生分析。也许是30这个数有点大,同学们读后眼里都充满了疑问困惑。于是我提议将“抢30”改为“抢10”。同学们对此纷纷都表示赞同。问题1:“抢10“游戏公平么?接着,让学生在自己动手实践。建议由两位同学示范“抢10”的游戏,五局三胜制。一些想玩却没有把握的学生显得很犹豫,而一些胆大的同学已经纷纷举手要求示范。两位同学来到讲台前,一位同学从1开始说,这样一直交替到了10。两局之后,无论是台上同学还是台下的同学都发现了规律:要抢到10,就必须先抢到7。于是大家又开始想如何才能先抢到7。再玩两局之后,大家又发现:要抢到7必须要先抢到4。最后,游戏结束时,同学们都明白了:先说1的同学才能在游戏中获得胜利。为了让同学们都能深刻体验这个游戏,我又建议同桌的同学做。之后,我决定加大难度。“同学们,现在我们来试试‘抢30’怎么样?”我笑盈盈地建议到。“没问题!”同学们有了“抢10”游戏的经验都信心满满。这次通过四人一组的形式来探究。不久之后,各小组都先后表示找到了“抢30”获胜的秘诀。为了验证他们的秘诀,我也参与其中,由我开始说,同学们根据自己发现的规律,先抢到了30。“哦!我们赢了!”同学们在兴奋地欢笑成一片。“老师,为什么在‘抢10’中要先数就能获胜,‘抢30’又要后数才能获胜呢?”一位男生表示了他的困惑。“对啊,为什么‘抢10’与‘抢30’会有不同的获胜的方法呢?这也在我的意料之外。同学们,你们觉得呢?”我也表达了我的困惑和想法。于是同学们继续分析研究“抢10”和“抢30”有什么区别?最后大家发现:原来抢数游戏本质上是一个是否被“3”整除的问题。由于10和30除以3后余数不同,所以得出的结论就出现了差。最后,我建议同学们自己设计一个抢数游戏和身边的朋友或家人玩,他们对此的积极性更高了。课堂上,让每个学生都参与到课堂中来,并对学生的想法作出积极的鼓励,对他们的疑惑不要立即给出答案而是引导他们自己去思考、质疑,激活他们的质疑意识。让他们乐于参与其中,自由地去探索、发现、质疑、验证自己的想法。同时也要让他们明白:在课堂上自由地思索、自由地表达想法是受到鼓舞的,即使错了也没有关系。

(二)引导学生掌握质疑的方法,提高质疑的质量

古训曰:授人以鱼不如授人之渔。教给学生质疑的方法,才是解决当前中学生质疑能力不足的根本之道。但质疑也要要求质量,不要为疑而问、一疑就问。要引导到学生自己解决疑问。那么高质量质疑的标准是什么呢?个人认为是高质量的疑问包括质疑的深度和广度,质疑的深度是指提出的每个问题都要使你更加接近你所寻找的正确答案;而质疑的广度是指质疑的范围不仅包括书本上的知识,还包括老师的观点和学生的观点。数学一个重要的特点是:很多数学题目可以转化为与性质、定理相似的格式,从而达到计划计算的目睹。所以老师要有意识地启发学生比较分析已经学过的概念、性质、法则、公式之间是否有相似之处,是否可以利用相似之处简化计算。例如在刚开始学习《一元二次方程》时,我设计了这样一个题目:求方程(x+1)2+6(x+1)+9=0的二次根。学生拿到题后开始计算,大多数学生计算的方法是:先把括号去掉,然后得出x2+6x+16=0,然后根据平方差公式求解。大部分学生都能得到了正确的解:x=-4。这时候,我温和地提醒学生到:“大家仔细想想看这道题有没有更加简便的算法?”一会儿后,有位同学表达了自己的观点:“我认为,这个方程最简便的方法就是先去括号然后再计算。”“敢于表达自己的观点,这非常好”我刚说完。另一个学生就开始反驳:“我不这么认为,这个方程表面上与一般的一元二次方程没有什么联系,我们可以不可以把它转换化成与标准的完全平方公式或是平方差公式类似呢?”“这个想法很新颖。大家仔细看有没有什么发现?”我刚说完,另一个学生就站了起来,说:“老师,(x+1)这部分和书上完全平放公式似乎有点联系。如果把(x+1)整体换成另一个字母比如t,这个方程能写为(t+3)2=0这样一个完全平方公式。”“你的想法非常棒,为什么不我们不试试呢?”我鼓励到。当同学们用这种方法把方程解出来之后,我点出了这道题的用意所在:“同学们,你们刚才用的这种方法在数学上被称为换元法。它是一种非常重要的数学思想,通过换元将原来的方程简化,从而使计算变得简捷明了。”之后,我又将一些可以用换元法的变式题目出给学生做。通过这样的教学手段,可以使其学生们敢于质疑,在质疑的过程中亲身体会到成功的感觉,不仅可以让学生更相信自己的能力,同时也加强了学生的质疑能力,在以后的数学教学过程中,学生会更积极更主动的去参与教师所提出问题的解答,促进学生善于创新解题方法,达到理想的教学效果。

(三)全面培养学生解疑能力

韩愈说:师者,传道授业解惑者也。传统教学中,这种观念根深蒂固。学生也往往习惯去找老师解答疑惑。但是随着数学不断发展,学生们知识不断地增长,仅仅依靠老师解惑是远远不能满足学生的需求的。老师需要全面培养学生的解疑能力,只有全面培养学生的解疑能力,才能促进学生主动尝试去解决所遇到的问题,才能使其学生养成独立解决问题的能力,逐步消除学生对老师过度依赖的现状,真正实现“学以致用”。因此解疑教学方法,不仅要学生学会向老师学习解答疑惑的方法,更要学生学会在同学之间学习解疑的方法,最重要的是引导学生自己解答疑惑。学生的质疑能力不足要引起重视,所以我们要不到推行数学教育改革,采用切实可行的方法来培养学生的质疑能力,当然,质疑能力的培养也不能急功近利,还需要循序渐进,并不断地探索和实践。

初一数学小论文范文 第五篇

今天,我遇到两道数学题,并得到了一些窍门。

第一题:幼儿园买进大小两种毛巾各40条,共用58。8元。大毛巾比小毛巾的2倍多元。这两种毛巾各多少元?其实,这道题还是较简单的。只要用解方程就行了。先算出大小毛巾的价钱,在计算,不一会,我就做完了。

乔布斯水果店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买。后来不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的,那么第二次降价后的价格是原来定价的。第二次降价的利润是:(×)÷(1-40%)=25%,价格是原定价的(1+25%)÷(1+100%)=。接着道题要把这批苹果看成1,价格也看成1,这批苹果总共分两次卖,第一次卖了,第二次卖了。总的利润是,总的售出价格就是,第一次卖了40%×,×就是第二次卖出的总货款。再减掉二次的成本60%,就得到第二次多卖出的钱。利润就是销售价比成本价多出来的钱再除以成本,所以用这个钱除以第二次的成本1-40%,就等于第二次降价后的利润,这时候需要注意,原来的定价应该是(1+100%),所以用(1+25%)÷(1+100%)相除就等于所要答案。

某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15,小轿车10元。某日通过该收费站的大客车和小客车数量比是5:6,小客车与小轿车数量比是4:11,收取小轿车通行费比大客车多210元。求这天这三种车辆通过的数量。解题思路:先把两个比换算成同样的比例,这样三个之间就可以作比较。小轿车比大轿车多出210元,车子的数量比是33:10,实际上收费比是3:1,这样形成的差33×1-10×3=3,210除以3就等于每个配给的量是70辆。就是5:6=10:12,4:11=12:33,30:10=3:1,33×1-10×3=3,210÷3=70(辆);大客车:70×30÷30=70(辆),小客车:70×6÷5=84(辆),小轿车:84×11÷4=231(辆)。

不要担心题目有多难,无论什么数学题总会有答案的,数学就是这么简单,就要看你逻辑性、思维和分析能力是否强。希望你们也爱上数学!

注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意

发表评论

评论列表(7人评论 , 39人围观)