中心对称问题总结 第1篇
八年级数学《中心对称图形一》复习学案 班级 姓名 一、知识点回顾: (一)图形的旋转 (二)中心对称与中心对称图形 (三)中心对称的性质:1、成中心对称的两个图形 。 2、成中心对称的两个图形,对称点连线都经过 ,并且 被 。 (四)轴对称与中心对称的区别: 1、轴对称是指一个图形沿某 对折,如果它能和另一个图形重合,那么称这两个图形成轴对称。 中心对称是指一个图形绕某 旋转 ,如果它能和另一个图形重合,那么称这两个 图形成中心对称图形。 2、轴对称图形有对称 ,中心对称图形有对称 。 (五)轴对称与中心对称作图题: 二、例题:请在下图中作出△关于x 轴的对称图形△A1B1C1,再作出△关于原点的对称图形△A2B2C2,问△A1B1C1与△A2B2C2有怎样的位置关系? y C A B
三、常见中心对称图形的定义、性质及判定: (一)平行四边形 1、平行四边形的定义:叫做平行四边形。 2、平行四边形的性质:①平行四边形的边之间的关系:对边位置关系:对边数量关系: ②平行四边形的角之间的关系:对角,邻角。 ③平行四边形的对角线之间的关系:。④平行四边形的对称性:平行四边形是对称图形,不是对称图形,对称中心是。⑤平行四边形的面积计算方法:(1)底×高(2)一条对角线分平行四边形所得的两三角形的面积之和,分得的两三角形关系是。(3)两条对角线分平行四边形所得的四个三角形的面积之和,分得的这四个三角形的面积关系是。 3、平行四边形的判定: (1)从边之间的关系考虑:①从两组对边之间位置关系考虑: 的四边形是平行四边形。②从两组对边之间数量关系考虑: 的四边形是平行四边形。
中心对称问题总结 第2篇
2016苏教版平移、旋转、轴对称知识点总结 平移 1、物体在同一平面上沿直线运动,这种现象叫做平移。 注意:平移只是沿水平方向左右移动(×) 平移不仅仅局限于左右运动。 2、平移二要素:(1)平移方向;(2)平移距离。 将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。 3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。 4、在方格纸上平移图形的方法: (1)找出图形的关键点; (2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点; (3)把各点按原图顺序连接,就得到平移后的图形。 注意:用箭头标明平移方向(→) 旋转 1、旋转:物体绕某一点或轴的转动。 2、旋转方向:与时针运动方向相同的是顺时针方向; 与时针运动方向相反的是逆时针方向; 3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。
4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向 变了。 5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线 段都旋转相同的角度,对应点到旋转点的距离相等。 6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。 7、简单图形旋转90°的画法: (1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线; (2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点; (3)参照原图形顺次连接所画的对应点。 关键线段:水平的、竖直的、过旋转点的线段。 轴对称图形 1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。折痕所在的直线叫做对称轴。 注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头) 2、轴对称图形性质:对称点到对称轴的距离相等。 3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。 4、在方格纸上补全轴对称图形关键: 找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。 5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。
中心对称问题总结 第3篇
轴对称与轴对称图形 姓名_______学号_______班级_______ 学习目标: 1.欣赏生活中的轴对称现象和轴对称图案,探索它们的共同特征,发展空间观念. 2.通过具体实例了解轴对称概念,了解轴对称图形的概念,知道轴对称与轴对称图形的区别和联系. 学习重点: 了解轴对称图形和轴对称的概念,并能简单识别、体会轴对称在现实生活中的广泛应用和它的丰富文化价值. 学习难点: 能正确地区分轴对称图形和轴对称,进一步发展空间观念. 学习过程: 一、创设情境 观察如下的图案, 它们有什么共同的特征? 二、探索活动 活动一折纸印墨迹 问题1.你发现折痕两边的墨迹形状一样吗?
问题2.两边墨迹的位置与折痕有什么关系? 概念:把一个图形沿着___________________翻折,如果它能够与另一个图形__________,那么称这两个图形____________________对称,也称这两个图形成______________. 这条直线叫做________________,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点. 如图,△ABC和△DEF关于直线MN对称, 直线MN是对称轴,点A与点D、点B与点E、 点C与点F都是关于直线MN的对称点. 活动二切藕制作成轴对称的两个截面 联系实际,你能举出一些生活中图形成轴对称的实例吗? 活动三
把_________图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是_______________,这条直线就是_____________. 请你找出图1-5中的各图的对称轴. 联系实际,你能举出一个轴对称图形的实例吗? 活动五轴对称与轴对称图形的区别和联系 三、课堂练习 1. 分别画出下列轴对称型字母的对称轴以及两对对称点. 2.画出下列各轴对称图形的对称轴.
中心对称问题总结 第4篇
轴对称全章复习与巩固(基础) 【学习目标】 1. 认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用; 2. 了解垂直平分线的概念,并掌握其性质; 3. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法. 【知识网络】 【要点梳理】 要点一、轴对称 1.轴对称图形和轴对称 (1)轴对称图形 如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称 定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质: ①关于某条直线对称的两个图形形状相同,大小相等,是全等形; ②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线; ③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上. (3)轴对称图形与轴对称的区别和联系 区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形. 2.线段的垂直平分线 线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点二、作轴对称图形 1.作轴对称图形
注:本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即后台留言通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意
发表评论